# **HEATHERLOCH MUNICIPAL UTILITY DISTRICT**

# 2022 Drinking Water Quality Report

This report is an annual summary of the quality of your drinking water. It is required by the Texas Commission on Environmental Quality and is based on the most recent U.S. Environmental Protection Agency required tests.

# **OUR DRINKING WATER IS SAFE**

The Texas Commission on Environmental Quality (TCEQ), has completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this consumer confidence report. For more information on source water and protection efforts at our systems contact Natalia Espitia at: (281) 353-9809.

# En Español

Este reporte incluye información importante sobre su agua potable. Para asistencia en español, favor de llamar al telefono: (281) 353-9809

# Where do we get our drinking water?

The source of drinking water used by Heatherloch Municipal Utility District is ground water from the Evangeline Aquifer. Heatherloch MUD provides surface water purchased from North Harris County Regional Water Authority who provide treated water from Lake Houston.

#### **Contaminants that may be Present in Source Water**

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

### Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic system, agricultural livestock operations, and wildlife;
- **Inorganic contaminants**, such as salts and metals, which can be naturally occurring or result from urban stormwater, runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming;
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations that limits the amount of certain contaminants in water provided by public water systems. Federal Food and Drug Administration Agency regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact h2o innovation at (281) 353-9809.

# Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or Immuno-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from Safe Drinking Water Hotline (800-426-4791).

# **Public Participation Opportunities:**

The Heatherloch Municipal Utility District Board of Directors meet at 5:00 P.M on the third Monday of each month at the Trophy Club House No.2 located on 14515 Wunderlich Drive, Houston, Texas 77069. You may contact Natalia Espitia, with H<sub>2</sub>O Innovation at 281-353-9809 with any concerns or questions you may have.



**Trusted Utility Partners** 

# **About the Following Table**

The following table contains all of the chemical constituents which have been found in your drinking water for the most recent testing performed in accordance with applicable regulations. USEPA requires water systems to test up to 97 constituents. The constituents detected in your water are listed in the attached table.

#### **DEFINITIONS**

Maximum Contaminant Level (MCL) - The highest permissible level of a contaminant in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected health risk. MCLG's allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Level 1 Assessment - A Level 1 Assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment - A Level 2 Assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E.coli MCL violation has occurred and/or why total coliform bacteria have been found in out water system on multiple occasions.

**ppm** = parts per million or milligrams per liter (mg/l), one part per million corresponds to one minute in two years or a single penny in \$10,000.

**ppb** = parts per billion or micrograms per liter ( $\mu g/l$ ), one part per billion corresponds to one minute in 2,000 years or a single penny in \$10,000,000.

**pCi/l** = pico curies per liter: Measure of radioactivity.

NTU = Nephelometric Turbidity Units (a measure of turbidity)

Action Level = The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

# Heatherloch Municipal Utility District TX 1010548 2022 Drinking Water Quality Report:

|      | Inorganic Contaminants |                                                       |                                |     |      |                     |                                              |  |  |  |
|------|------------------------|-------------------------------------------------------|--------------------------------|-----|------|---------------------|----------------------------------------------|--|--|--|
| Year | Constituent            | Highest<br>Detected Level<br>at Any Sampling<br>Point | Range of<br>Detected<br>Levels | MCL | MCLG | Units of<br>Measure | Source of Constituent                        |  |  |  |
| 2022 | Nitrate                | 0.80                                                  | 0.80 - 0.80                    | 10  | 10   | ppm                 | Runoff from fertilizer use.                  |  |  |  |
| 2020 | Barium                 | 0.131                                                 | 0.131 - 0.131                  | 2   | 2    | ppm                 | Discharge from drilling wastes.              |  |  |  |
| 2020 | Fluoride               | 0.13                                                  | 0.13 - 0.13                    | 4   | 4    | ppm                 | Erosion of natural deposits.                 |  |  |  |
| 2020 | Cyanide                | 50                                                    | 50 - 50                        | 200 | 200  | ppb                 | Discharge from plastic/fertilizer factories. |  |  |  |

|      | Organic Contaminants            |                                                       |                                |     |      |                     |                                            |  |  |  |
|------|---------------------------------|-------------------------------------------------------|--------------------------------|-----|------|---------------------|--------------------------------------------|--|--|--|
| Year | Constituent                     | Highest<br>Detected Level<br>at Any Sampling<br>Point | Range of<br>Detected<br>Levels | MCL | MCLG | Units of<br>Measure | Source of Constituent                      |  |  |  |
| 2022 | Total Trihalomethanes<br>(TTHM) | 14.1                                                  | 13.9 - 14.1                    | 80  | n/a  | ppb                 | By-product of drinking water chlorination. |  |  |  |
| 2022 | Haloacetic Acids<br>(HAA5)      | 18.1                                                  | 17.7 - 18.1                    | 60  | n/a  | ppb                 | By-product of drinking water chlorination. |  |  |  |
| 2022 | Atrazine                        | 0.2                                                   | 0.2 - 0.2                      | 3   | 3    | ppb                 | Run off from herbicide used on row crops.  |  |  |  |
| 2022 | Simazine                        | 0.2                                                   | 0.2 - 0.2                      | 4   | 4    | ppb                 | Herbicide runoff.                          |  |  |  |

|      | Disinfectant Residual    |                 |                             |      |       |                     |                                        |  |  |
|------|--------------------------|-----------------|-----------------------------|------|-------|---------------------|----------------------------------------|--|--|
| Year | Constituent              | Highest Average | Range of<br>Detected Levels | MRDL | MRDLG | Units of<br>Measure | Source of Constituent                  |  |  |
| 2022 | Chlorine<br>Disinfectant | 3.72            | 0.58 - 4.30                 | 4    | 0     | ppm                 | Disinfectant used to control microbes. |  |  |

<sup>\*\*</sup>The chlorine disinfectant maximum contaminant level (MCL) of 4.0 mg/L is a running annual average. Although some of the disinfectant sample result levels were occasionally over 4.0 mg/L, the running annual average was always below 4.0 mg/L and the District was never in violation.

|      |                       | Unregulated Contaminants       | ;**                            |                  |
|------|-----------------------|--------------------------------|--------------------------------|------------------|
| Year | Constituent           | Average of All Sampling Points | Range of<br>Detected<br>Levels | Units of Measure |
| 2021 | Monochloroacetic Acid | 2.40                           | 2.40 - 2.40                    | ppb              |
| 2022 | Dichloroacetic Acid   | 15.60                          | 15.50 - 15.70                  | ppb              |
| 2022 | Trichloroacetic Acid  | 2.30                           | 2.20 - 2.40                    | ppb              |
| 2022 | Bromochloracetic Acid | 2.95                           | 2.90 - 3.00                    | ppb              |
| 2022 | Chloroform            | 10.16                          | 8.50 - 12.0                    | ppb              |
| 2022 | Bromodichloromethane  | 2.40                           | 1.50 - 3.00                    | ppb              |
| 2020 | Dibromochloromethane  | 1.15                           | 1.0 - 1.3                      | ppb              |

<sup>\*\*</sup>Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

|      | Lead & Copper |                 |                       |      |                         |                     |           |                             |  |
|------|---------------|-----------------|-----------------------|------|-------------------------|---------------------|-----------|-----------------------------|--|
| Year | Constituent   | 90th Percentile | # of sites<br>over AL | MCLG | Action<br>Level<br>(AL) | Units of<br>Measure | Violation | Source of Constituent       |  |
| 2020 | Copper        | 0.0426          | 0                     | 1.3  | 1.3                     | ppm                 | N         | Erosion of natural deposits |  |

<sup>\*</sup>The 90th percentile of the Lead/ Copper analysis means the top 10% (highest sample results) of all samples collected.

# During 2022, Heatherloch M.U.D. received surface water from the North Harris County Regional Water Authority. The following is a compilation of the water quality information provided by the North Harris County Regional Water Authority:

|      | Turbidity** |                                                    |                                |                       |                  |                       |  |  |  |  |
|------|-------------|----------------------------------------------------|--------------------------------|-----------------------|------------------|-----------------------|--|--|--|--|
| Year | Constituent | Highest Detected<br>Level at Any<br>Sampling Point | Range of<br>Detected<br>Levels | <b>Monthly Limits</b> | Units of Measure | Source of Constituent |  |  |  |  |
| 2021 | Turbidity   | 0.49                                               | 0.30 - 0.49                    | 0.3                   | NTU              | Soil runoff.          |  |  |  |  |

<sup>\*\*</sup>Turbidity has no health effects. However, turbidity can interface with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organism. These organisms include, bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches. NTU - Nephelometric Turbidity Units.

|      | Inorganic Contaminants |                                                    |                                |                 |    |                     |                              |  |  |
|------|------------------------|----------------------------------------------------|--------------------------------|-----------------|----|---------------------|------------------------------|--|--|
| Year | Constituent            | Highest<br>Detected Level at<br>Any Sampling Point | Range of<br>Detected<br>Levels | Detected MCL Me |    | Units of<br>Measure | Source of Constituent        |  |  |
| 2021 | Barium                 | 0.35                                               | 0.0396 - 0.035                 | 2               | 2  | ppm                 | Discharge of drilling wastes |  |  |
| 2022 | Nitrate                | 0.18                                               | 0.18 - 0.18                    | 10              | 10 | ppm                 | Runoff from fertilizer use   |  |  |
| 2021 | Fluoride               | 0.37                                               | 0.00 - 0.37                    | 4               | 4  | ppm                 | Erosion of natural deposits. |  |  |

<sup>\*</sup>If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead

|      | Organic Contaminants         |                                                       |                                |     |      |                     |                                            |  |  |
|------|------------------------------|-------------------------------------------------------|--------------------------------|-----|------|---------------------|--------------------------------------------|--|--|
| Year | Constituent                  | Highest<br>Detected Level at<br>Any Sampling<br>Point | Range of<br>Detected<br>Levels | MCL | MCLG | Units of<br>Measure | Source of Constituent                      |  |  |
| 2021 | Atrazine                     | 0.64                                                  | 0.00 - 0.64                    | 3   | 3    | ppb                 | Runoff from herbicides used on row crops.  |  |  |
| 2022 | Total Trihalomethanes (TTHM) | 22.0                                                  | 21.6 - 22.0                    | 80  | n/a  | ppb                 | By-product of drinking water chlorination. |  |  |
| 2022 | Haloacetic Acids<br>(HAA5)   | 22.0                                                  | 22.0 - 22.0                    | 60  | n/a  | ppb                 | By-product of drinking water chlorination. |  |  |

<sup>\*</sup>The value in the Highest Level or Average Detected column is the highest of all TTHM / HAA5 sample results collected at a location over a year.

|      |                        | Unregulated Contaminants**        |                                |                  |
|------|------------------------|-----------------------------------|--------------------------------|------------------|
| Year | Constituent            | Average of All<br>Sampling Points | Range of<br>Detected<br>Levels | Units of Measure |
| 2022 | Chloroform             | 18.10                             | 18.10 - 18.10                  | ppb              |
| 2022 | Bromochloroacetic Acid | 2.40                              | 2.40 - 2.40                    | ppb              |
| 2022 | Dichloroacetic Acid    | 15.80                             | 15.80 - 15.80                  | ppb              |
| 2022 | Monochloroacetic Acid  | 2.60                              | 2.60 - 2.60                    | ppb              |
| 2022 | Trichloroacetic Acid   | 3.60                              | 3.60 - 3.60                    | ppb              |
| 2022 | Bromodichloromethane   | 3.50                              | 3.50 - 3.50                    | ppb              |

<sup>\*\*</sup>Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

The drinking water produced by Your District exceeds the minimum water quality standards as established by the EPA.

Our water is safe to drink.